币安——比特币、以太币以及竞争币等加密货币的交易平台
的特性,半导体中有电子和空穴两种电流载体(指可以自由移动的带有电荷的物质微粒,简称“载流子”),其中电子带负电、空穴带正电,半导体材料中某种载流子占大多数,则称它为多子,占小部分的即为少子。硅片最基本的材料是“硅”,纯净的硅不导电,但可以通过在硅中掺杂来改变特性:在硅晶体中掺入硼元素,即可做成P型硅片;掺入磷元素,即可做成N型硅片。因硼元素和磷元素价位特点不同,P型硅片中空穴作为多子主要参与导电,电子是少数载流子(少子);N型硅片中电子作为多子主要参与导电,空穴是少子,上述P(Positive,正电)和N(Negative,负电)即根据硅片多子的正负电情况进行的命名。
随着生态环境问题日益显现,为应对气候变化的不利影响,1992年联合国环境与发展大会期间全球150多个国家以及欧洲经济共同体共同签署了《联合国气候变化框架公约》,旨在减少温室气体排放。1997年《京都议定书》正式签订,以法规的形式限制温室气体排放。为控制温室气体排放、保护地球家园,2016年签署的《巴黎协定》规定把全球平均气温升幅控制在工业化前水平以上低于2摄氏度以内的基础目标和1.5摄氏度之内的进一步努力目标。
根据IRENA数据,2010年至2022年期间,光伏发电度电成本由2.75元/KWh(根据当年末美元兑人民币即期汇率折算,下同)下降至0.34元/KWh,累计下降87.64%。根据IRENA数据,2010年中国煤电发电成本为0.33元/KWh;根据Bloomberg数据,2021年及2022年,中国煤电发电度电成本分别为0.43元/KWh及0.55元/KWh(2020年以来,煤炭价格波动幅度较大)。2022年光伏发电度电成本已低于2010年煤电发电的成本水平,光伏发电相较于传统能源发电已具备经济性。
在我国“双碳”目标背景下,光伏作为近年我国增速最快的新能源,战略地位日益凸显。根据国际能源署数据,2012-2022年,我国光伏发电量复合增长率达61.30%,增长速度大幅领先其他清洁能源。随着分布式光伏整县推进以及风光大基地规划建设的加速落地,国内光伏产业迎来新一轮发展机遇。考虑到未来硅料新增产能逐步释放,供应链紧张程度缓解,加之电池转换效率的进一步提升,将有效带动组件成本下降,预计分布式和集中式装机规模有望快速提升。
根据上市公司公开披露的定期报告、投资者交流纪要等相关公开信息,截至2023年9月末,以公司客户为代表的主流厂商中,晶科能源合肥一、二期以及尖山一、二期累计35GWTOPCon已达到满产状态,此外,晶科能源规划在越南、袁花、楚雄、上饶建设合计35GW的TOPCon电池片产能已经在陆续的建设中,规划的山西56GW的TOPCon垂直一体化大基地项目已开工建设;中来股份已完成7.6GWTOPCon的产线GW新产能处于陆续建设中;钧达股份18GWTOPCon已达满产,淮安基地一期13GWTOPCon已投产;隆基绿能和林洋能源已分别公开投资建设30GWTOPCon及20GWTOPCon的计划;正泰新能TOPCon整体产能规划36GW,处于陆续建设中。
光伏电池片制造过程中,需要经历扩散、镀膜等多个工艺环节,最终实现特定的结构。工艺解决方案的设计,既需要对工艺环节的具体要求有深入理解(以镀膜为例,需要深入了解所镀薄膜的材质、厚度、均匀度、致密度以及成本等),同时还要能够综合运用热、电、气或光等物理或化学原理,并结合材料特性、化学反应特点、核心零部件参数特征,设计开发出实现特定工艺的设备。工艺设备的开发,涉及到热力学(特别是高温相关的加热及热场控制)、流体力学、无机化学、材料学、半导体物理学、电磁学机械自动化设计、控制理论、统计学等多门学科,设备运行的过程中,设备内部工艺环境具有“不可见”和“不可有形捕捉”等特点。设计团队需要在结构设计的基础上搭建相应的模拟测试平成热场、电场、气场在预期工艺环境下的模拟仿真并通过材料选型、核心零部件以及精密加工完成最终的产品开发设计。
现阶段光伏电池片设备技术变革主要是聚焦新型高效光伏电池片生产所需要的核心工艺设备,产业参与者需具备对行业发展趋势、客户深层次需求的理解能力,并具有深厚的技术沉淀、经验积累及量产落地的能力,具有较高的准入门槛。当前规模化量产的光伏电池片正处于PERC向TOPCon、XBC等新技术演进阶段,电池片厂商需要平衡好技术成熟度、经济效益等多个因素,对上游设备厂家提出更高的综合性解决方案要求。设备厂商需要配合下游进行持续的验证和优化,不断对解决方案进行迭代,以实现降本增效目标的持续推进。此外,由于不同下游厂商可能采用不同的工艺路线或者工艺细节,设备具有一定的定制化特点。
B背面由隧穿氧化及掺杂多晶硅层构成,以多晶硅层的制备方式划分,主要分为三种技术路线,分别为LPCVD、PECVD及PVD,其中LPCVD相较于PECVD、PVD在技术成熟度、成膜质量(均匀性好、致密度高)方面具有优势,随着石英管寿命的提升以及双插工艺(双插,即一个舟齿放置两块硅片,相较于单插,硅片放置量提升一倍)的不断成熟,LPCVD已成为下游客户的主流选择。除上述外,TOPCon生产过程涉及的其他设备则与PERC大体相同,主要环节包括清洗制绒、刻蚀、正面氧化铝(Al2O3)沉积、双面氮化硅(SiNx)沉积、丝网印刷等。
硼原子相对于其拟扩散进入的衬底硅原子而言,原子质量较小,对硅原子的替代需要更高的能量,硼扩散工艺相对于磷扩散需要的温度更高(由850℃上升至1050℃左右),且扩散时间长,工艺难度大,设备维护费用高。行业内原有工艺采用三溴化硼作为扩散硼源,通过氮气携源的方式通入设备,其通入状态为小液滴,在扩散过程中,容易造成硼源在硅片表面分布不均匀,导致形成的PN结不均匀,同时产生的副产物为粘稠状物质,设备需要频繁维护,稼动率低,运营成本极高,难以实现大规模量产,主要用于研发。