400-123-4657

币安新闻 分类
币安——比特币、以太币以及竞争币等加密货币的交易平台基于储能的光伏发电并网系统的能量管理及协调控制发布日期:2024-09-09 浏览次数:

  币安——比特币、以太币以及竞争币等加密货币的交易平台(访问: hash.cyou 领取999USDT)

币安——比特币、以太币以及竞争币等加密货币的交易平台基于储能的光伏发电并网系统的能量管理及协调控制

  储能装置是光伏并网发电系统中的重要组成部分。通常包括蓄电池、电容器。其中,蓄电池成本低廉,但是循环倍率有限制,功率密度较低,因此,无法很好地兼顾蓄电池充放电过程以及电池较大功率跟踪。考虑到光伏电站的实际发电规律,采用蓄电池往往充放电循环次数多造成容量迅速失效,使蓄电池寿命缩减。电容器是另一种储能类型。相比蓄电池,电容器的循环寿命更长,对充放电次数没有很多限制,功率密度高,可以实现瞬时功率吸纳放出。不足是不能长时间为负荷提供电能。在当前的光伏并网系统中,通常采用上述两种储能类型,实现优势互补,构建高性能的储能系统,蓄电池作为长期储能装置,电容器作为短期储能装置,既可以实现能量长时间储备的目的,而且可以瞬时调节系统的功率,采取合理的能量管理策略。

  通过对蓄电池和电容器容量进行配比,满足储能系统的能量管理需求。设计环节应考虑储能系统的电流吞吐能力,满足光伏发电系统的脉动电流变化,要留有一定的富裕量。能量管理目标的实现主要是对光伏控制器和并联控制器进行工况调整。在恒流条件下,电容器的充电电压达到较大功率跟踪值,光伏控制器的输出电流减小,此时,光伏控制器在较大功率跟踪值条件下进入充电工况。当电容器的电容量较小时,电压较低,在较大功率跟踪值条件下,光伏控制器的输出电流较大,此时,为恒流模式充电工况,直到达到电容器较大功率跟踪值。电容器能量接近上限*,此时,端口电压接近额定电压,光伏控制器不再是较大功率跟踪模式,而进入恒压模式,保持电压不变。并联控制器在设计过程中应考虑储能系统的容量配置及相关影响因素,如气候、负荷、光照、温度等条件下所引起的发电功率变化情况。当蓄电池能量较少时,并联控制器以恒流模式对蓄电池充电;当蓄电池能量较多时,并联控制器处于恒压工况。如果电容器的电压比并联控制器的输入电压下限*,并联控制器停止运行。当蓄电池容量饱和且系统没有负载时,也将停止运行。如果充电电流保持恒定,则光伏控制器在电容器电压正常的情况下保持恒流输出;如果充电电流不能保持恒定,则光伏控制器进入恒压工作模式或者较大工作跟踪模式。此时,会存在光伏控制器启停切换频繁的问题,为此,采用滞回比较的方式设置并联控制启停两个门限。此外,可能存在蓄电池过放电的问题,对此在蓄电池电压小于电压下限*,系统切断蓄电池和负载之间的连接,使蓄电池充放电状态合理,延长电池寿命。

  在能量管理过程中,大多采用较大功率跟踪的方式,具体方法包括恒定电压控制法、扰动观察法、电导增量法。扰动观察法和电导增量法在采样环节存在误差,因此,会对系统启动造成不利影响,造成功率波动。在系统由开路电压转变为较大功率电压的过程中,电流变化情况较为剧烈,这种情况更加重了误差影响,对电流理论值带来偏差,不利于能量控制的准确性和时效性。为了减少采样带来的误差,将扰动观察法和电导增量法相结合进行计算。通过检测功率和电压的变化数值和变化方向,对系统电压进行调整使系统快速达到较大功率,然后,根据功率变化情况,采用电导增量法找到较大功率点。根据负载和输出功率之间的差值确定蓄电池充放电控制策略。由于功率对负载的变化情况更敏感,因此,根据负载和功率之间的差值能够更快速地对系统瞬时功率进行平衡。采用上述方法可以避免蓄电池在充放电两种状态下频繁切换,而且避免了在大电流高电压状态下工作,延长电池的使用寿命,减少电流的剧烈波动。

  基于低通滤波原理来设计混合储能协调控制策略是一种有效的方式。其原理是光伏电源输出功率通过滤波器得到光伏电源输出功率参考值,将之与光伏电源输出功率值相减,得到混合储能系统功率指令参考值。然后,这一功率指令参考值通过二个滤波器,得到高频分量和低频分量,其中高频分量作为电容的功率参考值,低频分量作为蓄电池的功率参考值。由于电容器充放电快速,循环次数限制少,因此,优先对电容器进行充放电,减少蓄电池充放电次数,延长其寿命。此外,对电容器电压和蓄电池荷电状态进行检测,优化得到两个滤波器的时间常数,从而对混合储能系统的功率进行调整,合理分配充放电顺序。对一个滤波器的时间常数进行调节可以实现混合储能系统的过充过放保护。例如,当检测到电容器端电压和蓄电池荷电状态达到混合储能系统过充过放工况时,调小一个滤波器的时间常数,避免过充过放情况发生。对二个滤波器的时间常数进行调节,可实现对混合储能系统的协调控制。当功率指令经过二个滤波器后,分别得到高频分量,对应电容器功率参考值和低频分量对应蓄电池功率参考值。有限对电容器进行充放电,当电容器不能满足混合储能系统的功率指令时,再用蓄电池来满足剩余功率指令。当一个滤波器时间常数增大时,混合储能系统的功率指令增大;当一个滤波器时间常数减小时,混合储能系统的功率指令减小。一个滤波器时间常数恒定时,当增大二个滤波器时间常数,则混合储能系统功率指令主要由电容器承担;当减小二个滤波器时间常数,则混合储能系统功率指令主要由蓄电池承担。

  当混合储能系统功率指令为负值时,检测电容器端电压,如果不超过0.8倍较大电压,则优先对电容器进行充电,二滤波器时间常数为极值。当电容器端电压高于0.8倍较大电压时,检测电容器端电压是否不超过较大电压,如果不超过则放电动作由蓄电池承担,调小二滤波器时间常数。检测蓄电池荷电状况,当荷电不超过较大荷电值,则继续对蓄电池充电;当荷电超过较大荷电值,此时,储能系统进入过充保护区域,调小一滤波器时间常数,使混合储能系统功率指令减小。

  Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电桩的接入,全天候进行数据采集分析,直接监视光伏、风能、储能系统、充电桩运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统在安全稳定的基础上以经济优化运行为目标,提升可再生能源应用,提高电网运行稳定性、补偿负荷波动;有效实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。

  应可在曲线查询界面,可以直接查看各电参量曲线,包括三相电流、三相电压、有功功率、无功功率、功率因数、SOC、SOH、充放电量变化等曲线曲线统计报表具备定时抄表汇总统计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况,即该节点进线用电量与各分支回路消耗电量的统计分析报表。对微电网与外部系统间电能量交换进行统计分析;对系统运行的节能、收益等分析;具备对微电网供电可靠性分析,包括年停电时间、年停电次数等分析;具备对并网型微电网的并网点进行电能质量分析。

Copyright © 2012-2024 Binance币安新能源光伏材料有限公司 版权所有 非商用版本