400-123-4657

币安新闻 分类
光伏工程施工流程范例6篇币安——比特币、以太币以及竞争币等加密货币的交易平台发布日期:2024-08-10 浏览次数:

  币安——比特币、以太币以及竞争币等加密货币的交易平台

光伏工程施工流程范例6篇币安——比特币、以太币以及竞争币等加密货币的交易平台

  10、逆变器的安装 逆变器如是小型挂墙式安装,则先将逆变器的安装底板固定于墙上,检查在前后左右间距是否满足逆变器厂家要求,再将逆变器徐徐挂上;如是落地式安装,则同配电柜要求一致。安装配电柜时,用滚杠、撬棍徐徐就位。安装多台柜时,应在沟上垫好脚手板,从一端开始,逐台就位,穿上螺栓拧牢。然后拉线找平直,高低差可用钢垫片垫于螺栓处找平,柜与柜间螺丝连接牢固,各柜连接紧密无明显缝隙,垂直误差每米不大于 1.5mm,水平误差每米不大于1mm,但总误差不大于 5mm,柜面连接横平竖直。

  建筑施工管理是指“建筑行业结合自身发展所需要的内外条件以及工程项目的施工特点,合理化配置使用物资、资源、条件、环境要素等的管理流程,从而根据项目约束条款实现合同的有关要约、完成质量施工。施工质量的提高是施工管理工作开展的最终目标,而施工质量管理就是施工管理工作中的重要部分,施工质量管理可以从以下几个方面着手,第一,施工工艺技术管理。虽然施工工艺和技术相对较多,但是具体选择何种施工技术是需要根据工程的实际情况而确定的,因此,施工人员在工艺选择时一定要对工程的技术要求进行细致的分析。第二,施工材料管理。施工材料质量直接关系到了工程的施工质量,因此,建筑施工管理工作要重点把握施工材料的管理,主要的管理方式是对施工材料进行抽样检验,对于施工设备和器材要加强日常的使用管理和养护工作,以延长其使用寿命。

  近年,随着不可再生能源大量开采,其储存量越来越少,世界各国开始重视可再生能源开发和利用。目前,可利用的可再生能源主要有核能、太阳能、水能、风能等,尤其对于太阳能来说,作为储量最大、利用最清洁的自然能源,在工程项目中受到人们的高度关注。中国光伏产业由于起步较晚,正处于发展阶段,因此在项目建设过程中还存在诸多不确定性,一旦在建设和运行过程中出现问题,会给业主和承包商带来极大的经济损失,因此在项目建设中加强对于光伏工程项目承包管理的控制,具有非常重要的社会意义和现实意义。

  目前,在建筑工程当中,光伏发电系统主要有两种形式:将太阳能直接转化成电能和将太阳能转化成热能后再将其转化成电能[1]。a)对于第一种形式来说,主要是以光电效应为基础,通过太阳能电池将太阳能转化成电能,在这个过程中,太阳光照照射到太阳能电池的二极管上,二极管会自动将太阳能转化成电能,并产生一定流量的电流。一般来说,将太阳能电池串、并联,从而形成电池方阵应用于建筑工程中;b)对于光能、热能和电能之间的转换过程来说,太阳能照射到太阳能集热器上,通过将其转换成热能,再利用汽轮机的运动来变为电能,换句话说,这种转化形式与普通火力发电形式类似,因此一般不使用在建筑中。根据太阳能转化原理不同,将光伏发电系统分为独立光伏发电系统和并网光伏发电系统两种形式。独立光伏发电系统主要由蓄电池、光伏元件和控制器构成,适合于没有电的偏远地区,但由于这个系统极易受周围环境和气象影响,在应用中存在不稳定性等问题,因此在系统供电过程中应当添加储能装置和管理装置。并网光伏发电主要由光伏阵列和光伏并网逆变电源组成,其中光伏阵列由太阳能串联或并联而形成,用来将太阳能直接转化成电能;而光伏并网逆变电源则负责将太阳能电池产生的直流电转化成与电网同频的交流电,并将其并入供电电网中。

  在建筑工程中,光伏建筑一体化成为光伏应用的重要形式,通过将光伏发电技术与建筑工程相结合,实现光伏发电技术由小规模研发产品发展为大型发电技术应用,不断扩大光伏发电技术应用市场。当前,在建筑工程当中,光伏发电技术应用有两种形式:a)BIPV建筑一体化。这是新提出的概念,主要是在建筑物维护结构中铺设光伏列阵,将太阳能转化成电能,从而建成绿色环保建筑,这是当前非常具有前景的一种技术;b)光伏与建筑相结合的形式,包括建筑物与光伏系统结合和建筑与光伏器件结合:(a)在光伏系统应用建筑的过程中,主要是将组装好的光伏组件安装在建筑物屋顶上,建筑物起支撑作用,从而使光伏列阵能够与蓄电池、控制器等装置相连接,这种方式在建筑工程中应用非常普遍;(b)与光伏系统相比,光伏组件与建筑结合形式比较高级,对光伏组件的要求也比较严格,不仅要满足光伏功能,还应作为建筑的基本构件,符合建筑的基本功能要求[2]。总之,建筑光伏发电系统有效利用了建筑屋顶的面积,减少了多余的土地占地,不仅降低建筑能耗,还缓解了电网高峰时期用电。此外,由于光伏发电系统具有绿色环保功能,无需消耗不可再生燃料,也不会产生噪声和污染物,因此在建筑物中得到广泛应用。要非常注意的是,要保证光伏发电系统安全稳定运行,需要定期对其检查和维修,如设备组件破损、电池电压稳定性等,一旦发现问题,就要及时检查维修。一般来说,在光伏工程项目中,需要对其三个月一小检、每半年一中检、一年一大检,不断提高光伏发电系统运行效率,使其时刻保持在最佳发电状态[3]。

  在光伏工程项目中,由于工程造价比较高,相关利益人多,而且非常容易受到周围环境影响,因此在建设中存在非常复杂的风险因素。a)在光伏工程项目的建设过程中,由于光伏发电设备位于建筑物屋顶,长期暴露在自然环境当中,但太阳能电池的抗击能力非常低,因此自然灾害风险贯穿于项目建设和运行始终。一旦发生自然灾害,将会造成不可挽回的经济损失,其后果是无法估计的;b)由于中国光伏工程项目起步较晚,光伏发电技术也处于初级发展阶段,因此技术风险是当前面临的主要问题之一,并且影响非常广泛。一般来说,光伏工程项目建设看似非常简单,但其中涉及的技术非常复杂,需要综合衡量建筑物、运行环境和运行效果等多种因素,要满足其在露天环境中的使用年限;c)由于光伏工程项目中的各种设备成本比较高,质量参差不齐,因此前期资金投入很大,回收周期非常长,使各个阶段都面临成本风险。鉴于此,在建设光伏工程项目过程中需要建立完善的评价体系,通过评价各种风险,不断提高企业竞争力,实现光伏发电技术在建筑市场中的广泛应用。

  近年来,随着建筑工程项目逐渐由粗放型向现代项目管理转换,国内外承包商不断进入建筑市场当中,也使光伏工程项目在建设过程中受到承包商的影响非常大。a)承包商工程质量存在问题,主要包括材料不合理利用、以次充好,施工技术不规范,因此建设单位在与承包商签订合同时,需要明确指定材料质量,严格把好材料关,并通过制定相关施工制度,约束承包商的不良施工行为;b)承包现场管理人员和技术人员素质不高,缺乏责任承担意识,建设单位应当在签订合同过程中约束施工队伍质量,防止不良施工队伍进入。此外,要与承包商建立共同理念,承担相应责任义务;c)承包商工期拖延问题,为防止产生这种问题,建设单位制定严格的现场监督检查制度,并实行激励、惩罚措施,使承包商在规定日期内完工,一旦发生工期拖延问题,建设单位要与承包单位及时沟通交流,通过相应协调沟通,从而最大程度减小因工期拖延而带来的损失。

  国家对于高职教育的定位和任务是服务社会主义现代化建设,培养数以亿计的高素质劳动者和数以千万计的高技能专门人才。强调职业院校的学生要具有突出的实践能力。教育部关于职业教育的文件要求:要积极推行与生产劳动和社会实践相结合的学习模式,把工学结合作为高等职业教育人才培养模式改革的重要切入点,带动专业调整与建设,引导课程设置、教学内容和教学方法改革,则强学内容要结合企业实际[1]。归根结底是即要有实践能力,又必须结合社会实际。

  光伏发电是我国在能源领域大力发展的可再生能源之一,也是最近几年装机容量增长最快的发电方式,具有广阔的发展前景,特别是我国目前正在大力推进智能电网建设,为以光伏发电为代表的分布式能源发展提供了良好的机遇。光伏产业的飞速发展需要大量光伏技术型人才。这促使了高职院校对光伏发电技术人才培养的积极性。由于太阳能光伏技术属于跨多学科的新兴学科,它涉及气象、光学、半导体、电力、电子、计算机和机械等多学科技术,课程理论性强、内容较为抽象。而且光伏发电要求从业的技术人员不但要掌握扎实的理论知识,还要有较强的动手能力,才能合理的设计使用和充分发挥光伏设备的作用。而理实一体化教学重视市场对人才技能的要求,突出学生的动手能力,项目化课程突出学习内容的实用性,因此开展光伏发电设计安装与维护教学一体化与项目化改革具有较强的现实意义与长远意义。

  光伏组件的选型包括组件的尺寸、型号、额定功率、开路电压、短路电流、转换效率等技术参数的选择,要想会选型就必须了解组件的基本知识,这些知识包括光伏发电原理,组件的结构组成等。在这一部分的学习中有理论有实践,实践学习包括一系列的实验和实训,这些实训均在光伏发电试验箱上完成,有太阳电池发电原理实训,太阳电池能量转换实训,太阳电池组件效率测试实训及环境对光伏转换影响实训等;在掌握了组件的基本知识以后学生便能够顺利地完成组件的选型及串并联个数的设计。

  光伏汇流箱是将串联起来的多路组件汇流成一路,进一步提高系统的电流和输出功率;汇流箱具有过流保护,接地保护,电压电流显示等功能;逆变器是光伏发电系统的核心设备,在光伏发电系统的成本里也占有一定的比重,它是将光伏组件发出的直流电变为交流电输出,逆变器有多种类型,有离网型和并网型,有单相逆变器和三相逆变器等;正确的选型必须建立在对设备参数性能等详细的了解基础上;这部分内容通过让学生对设备进行拆装等实训加强学生的理解和掌握;还有光伏控制器控制实训,光伏逆变器原理实训,光伏逆变器输出电能质量分析等。

  有了以实际工程为基础的项目化教程,采用什么样的教学方法同样非常重要,以学生为中心组织教学,让学生边学边做,在学中做,在做中学,注重学生专业能力,方法能力和社会能力的培养是光伏发电课程教学方法改革的目标[3]。光伏发电课程教学实行理时一体的强化训练方式,将光伏发电系统设计安装工程项目分解成上述七个项目。以项目为载体,将知识点融入到各项目之中,在实训室内按项目组织实施教学,实现边教边学、边学边练、学做合一“教、学、做”有机融合的一体化教学[4],达到岗位技能培养的目的。以项目一光伏发电系统组件选型这部分内容为例;将该项目的内容分成多个具体的学习任务,如测试不同倾角太阳电池的发电量,测试不同温度下组件的发电量,测试不同光照强度下组件的发电量,测试光伏组件效率等。明确任务后将学生分为10组,每组4-5人,每个小组的组长轮流担任,一个任务一个小组长,让每个学生都有机会得到组织能力的锻炼。拿到任务后填写工作任务书,明确工作内容,工作目标,工作对象工作步骤工作方法以及提交的成果等。

  教学过程与评价要突出学生综合职业能力培养,注重培养学生专业能力、动手能力和社会能力。整个课程的考核包括操作熟练程度的考核,对问题理解的考核,完成任务期间表现的考核,团结协作意识的考核,学习态度的考核等,将课程考核放在课程进程中进行,提高学生学习的积极性。结果采用成果演示和答辩的考核方式,其中对问题的理解程度占本次考核成绩的40%,而操作的正确性,规范性及熟练程度占40%,团队协作能力,领导能力,沟通能力占20%。该课程共有七个项目,每个项目考核一次,而七次考核的加权平均作为本课程的最终成绩。以班级中的小明同学为例,假设小明被分在第一小组,本项目有多个具体的学习任务,则第一小组将分别演示几个任务,如光伏板效率测试,不同光照上发电量的测试,不同倾角下发电量的测试等,不同的任务由不同的成员担任组长,考核时由该小组协同完成该项目的几个任务,根据任务完成的水平给小组一个任务完成分作力每个成的员共同的操作分如第一小组操作分为85分,然后在根据完成任务期间各自的表现打出不同的社会能力分,如小明在成果演示过程中表现出团结协作,积极配合,圆满完成自己的角色任务。因此社会能力分给90分,最后是答辩考核,要据小明对本次实验原理及基本知识点的理解程度给出专业成绩如90分。这三个成绩再乘以各自的权重得出最终的成绩,因此小明本项目的最终成绩为85*0.4+90*0.2+90*0.4=88分。最后本课程完成以后由七个项目的成绩共同决定了小明本课程的成绩。

  政策使得光伏电站项目阶段性突击开工建设的现象频发,这一现象也成为该项目的一种主要特点。现阶段我国国内光伏电站产业发展更多需要政策扶持和推动,每一个政策出台后,都能够引起项目的集中开工建设。尤其是政策利好落地之前,更是容易出现抢工建设情况。政策导向使得我国光伏电站总量呈现出跳跃式增长趋势。根据中电联统计信息,截至2013年末我国国内光伏累计装机容量达到16.5GW,在2013一年当中就已经完成了10GW,2014年不完全统计,年内新增装机总量已经超过10GW。

  限于建设周期短等因素,现阶段我国国内大型地面光伏电站项目建设集成度高,短期采购量大,需要从系统管理角度将设计、采购、施工、管理高度集中,进而才能降低成本、提升效率。同时限于项目建设位置等因素影响,一般情况下,大型光伏电站项目因交通不便需要整体协调的工作非常多,形成系统化工作程序和流程有助于进一步提升工作效率,确保项目的整体质量。在光伏电站施工作业过程中因设备分散、需要实现分区域安装,施工的区域范围非常大,安装工程则多集中在阵列区。一般情况下一个20WM的广泛电站面积约为0.8平方公里,在施工中一部分工作属于重复性作业,做好阵列区工程施工时确保电站项目能够顺利完工、控制施工成本的关键所在。

  一些地名光伏电站项目当中存在管理效能低,施工成本控制不到位的情况,个别项目甚至出现管理滞后、违规操作的问题。相对于其他一些投资项目而言,光伏电站项目的投资回报率虽然较高,但是其投资的周期长,如果在建设过程中不注意成本控制,那么无疑将延长投资回收周期。施工项目管理要遵循基本的管理原则,同时也需要结合光伏电站的实际情况。造成管理效能低的主要原因是施工作业方存在不注重管理的问题,使得管理人员管理规范化意识弱化。

  采购管理是地名大型光伏电站项目能够顺利建设的基础保障。采购管理关乎到成本控制和工程质量。一般情况下光伏电站项目的采购设备主要是光伏组件、组件支架、逆变器、光伏监控系统、箱变等电气一次设备等。在建设过程中光伏组件、逆变器和箱变的用量非常大,采购成本高低对于对项目施工和项目运营所产生的经济性影响大。在光伏电站项目当中要积极提升招标采购的规范性,提升采购的效率,严格按照采购标准实施采购,进而为施工提供优质材料,确保工程质量。

  众所周知,当前社会发展中人们对于电力能源的需求量越来越大,而当前电力资源的生产主要就是依靠水利发电以及火力发电来实现,尤其是火力发电,更是当前发电厂的主要构成部分,其对于不可再生能源的消耗量是比较大的,进而也就需要进行优化。针对电力系统进行结构优化和完善除了要切实提升火力发电厂自身的运行效率,降低浪费问题的产生之外,还需要重点从新型能源项目的研发和推广入手,比如对于光伏站的投产应用就具备着较强的实效性,值得在电力系统中高度重视。促使光伏电站有效应用的基本前提条件就是需要确保相应的施工构建可靠性,尤其是对于施工过程中涉及到的各个施工工序及其核心要点,必须要重点把关,逐步提升其操作的标准化,避免质量问题的产生。

  对于光伏电站的施工建设工作来说,基础结构的施工是比较重要的一个方面,尤其是对于支架基础的构建,其直接关系到整个光伏电站的运行稳定性,能够避免后续工作中出现较大的麻烦和外界环境损坏问题。当前支架基础的施工处理根据不同地理环境分多种型式,在南方沼泽地一般是采用混凝土预制管桩施工处理方式进行,这种混凝土预制管桩施工处理的应用也确实能够有效保障支架基础的稳定性和可靠性。为了最大程度上提升混凝土预制管桩施工应用的质量效果,必须要重点从以下几个方面入手进行重点把关和控制:

  钢件是混凝土预制管桩施工处理中极为关键的一类基本原材料,这种钢件的质量控制工作也就需要引起人们的高度重视。钢件质量的控制首先需要针对其外表进行详细检查分析,了解钢件表面是否平整,不存在任何不利于施工质量的因素,对于钢件表面存在裂纹的材料予以处理,保障其能够符合于后续焊接或者是绑扎应用的质量需求;此外,还需要针对施工中应用到的一些预应力钢筋进行重点探究,切实提升预应力钢筋的各项参数指标试验检测效果,保障其能够在后续应用中达到理想的承受效果;最后,对于混凝土预制管桩应用中存在的桩头钢套箍材料来说,同样需要重点加强控制力度,对于存在明显凹陷的材料进行严格处理,避免其出现在施工现场中,一般其凹陷的控制参数应该在10mm以下。

  混凝土材料必然是支架基础施工操作中极为重要的一类原材料,其质量控制的必要性同样也极为突出。围绕着混凝土材料的具体配置和应用环节来说,首先应该针对各类混凝土配置所需的原材料进行严格的控制和审查,确保水泥、骨料以及添加剂等各类原材料具备理想的质量基础条件;其次,还需要针对相应的配置比例进行严格控制,确保各类原材料之间的配置比例能够满足于后续混凝土材料施工建设应用的需求,尤其是在水泥材料的添加数量方面,必须要引起足够的重视;最后,针对混凝土施工材料还需要进行严格的质量检验,分析混凝土原材料的各项指标是否满足于相关需求,不仅仅需要检查混凝土施工材料表面是否存在明显的蜂窝、麻面等问题,还需要针对其收缩属性以及稳定性等进行严格试验检测,保障其应用价值能够在施工中得到呈现。

  对于混凝土预制管桩的具体施工应用来说,同样需要重点加强对于各个参数指标的严格控制,比如对于桩长就需要结合施工现场环境进行严格控制,避免其出现较大的偏差,一般其偏差允许在标准桩长0.4%上下浮动;而对于壁厚同样需要进行严格控制,一般壁厚的要求是尽可能保障其避免低于某一标准厚度值,其许可范围在5mm以下;为了保障预制管桩的应用效果,还需要确保其相应的桩体弯曲度满足于施工需求,避免出现严重弯曲现象。这种参数的严格控制除了要针对相关预制管桩进行质量控制之外,还需要从施工现场勘查入手,不断提升对于施工现场的认识程度,保障施工操作的顺利进行。

  对于支架基础施工处理操作来说,为了提升其施工质量控制效果,还需要从一些施工处理细节入手进行严格控制,这种施工处理细节中比较关键的主要有以下几点:首先,需要在具体操作过程中密切关注施工对象的具体表现,尤其是对于桩体施打过程,更是需要引起足够的重视,针对存在的倾斜或者是回弹问题进行及时处理,避免影响到后续的施工处理效果;其次,针对每一项施工处理操作都需要做好详细的记录,并且进行归档整理,保障各个施工处理操作均具备理想的可查性;再次,对于施工处理中的相关参数控制更是需要引起足够的重视,保障相应的桩体所处位置以及相关深度满足于设计方案以及施工目的的需求,避免出现任何的施工质量缺陷;最后,对于施工处理中的外界环境同样需要做好密切关注,尽可能降低外界环境中各个不良影响因素的干扰,保障其施工的流畅性。

  支架立柱的安装关系到整个支架的稳定性效果,其安装操作应该从标准化和处理效果两个方面进行严格把关,尤其是对于和基础结构相连的关键部位,更是需要采取恰当的螺栓或者是其它一些连接方式进行处理,保障其连接的紧固性,避免支架立柱出现偏斜或者是不稳定问题。此外,对于支架立柱数量的有效设计也是比较关键的一点,这一点也应该和基础结构中的预埋件进行协调处理,避免其出现矛盾和冲突。针对支架立柱安装质量进行检查控制主要就是分析其垂直度、水平度是否符合于相关标准的要求,一般垂直度要求偏差应该在±1mm范围内,而水平度则要求其偏差控制在±2mm以内,如此才能够保障其最终的安装质量效果。

  对于支架安装中的主梁结构来说,则同样需要保障其准确性和牢固性,也需要针对具体的螺栓固定方式进行严格控制,确保其能够具备理想的固定效果,并且因为这一主梁结构的安装还和后续的操作程序存在着密切的联系,因此,更加需要严把质量关,切实提升操作的规范性。在支架主梁安装操作过程中,可以结合支柱螺栓长孔进行上下位置的调整,进而也就能够较好提升其主梁的应用可靠性,保障整个支架的稳定性。从具体的参数控制方面来看,这种支架主梁的偏差值应该控制在±2mm以内。

Copyright © 2012-2024 Binance币安新能源光伏材料有限公司 版权所有